A Useful Children’s Toy for the Peabody

My last blog post touched on the provenance of this ship model and my belief that it is a children’s toy. In this post I’m going to stick with my theory that this model was built for (or perhaps by) a child and compare the construction of this 126cm boat to the real thing ten times larger. While the construction of the model in the Peabody collection differs markedly from the real thing it still is an incredibly useful artifact for understanding the design of the vessel, that is where (and hopefully why) different boat elements were placed where they are. Thus, while perhaps to its first owner this boat was just a plaything, to us it’s an incredibly useful model that can reveal much about the practices of those who live on the Sulu Sea. In particular it shows the form of the vessel remarkably well, which reveals how it was a relatively late type of ship which was often used as a fast commercial vessel plying the islands of the Sulu sea for fish and trade.

First, I need to clarify a few things from my last blog post. I’ve previously called Peabody model 06-20-70/D2459 a Vinta. However, research has revealed that a more accurate term is “Pelang” as Vinta was a term used by foreigners (particularly the Spanish) to describe this type of vessel (Kurai, 1975). Second, I originally noted that this particular model had simple sail colors, however the original acquisition notes describe a “yellow and green cloth” (Peabody Museum). Third, additional research has suggested that the paddle (mentioned in the previous blog post) found with this model is not associated, based on the rounded blade and tied two part structure (Nimmo 1990, 59). And finally, if you haven’t already watched it, this scene from Zamboanga (1936), shows a number of model pelangs, just like this one, in use by small boys.
The Pelang, like many boats of the Pacific is an outrigger dugout canoe. What that means is that a large tree would be felled and then literally ‘dugout’ to create the main part of the vessel. The Pelang were often built from materials acquired on Basilan, the large island just south of the Zamboanga Peninsula, where the Peabody model was collected (Kurais 1975). Although I have made no attempt to identify the type of wood used for this model, it could very well be made of lauan, the Pilipino mahogany used for the construction of pelangs (Kurais 1975). This model is similarly built with the chisel marks of the workers tools readily visible inside the canoe.

Once a tree was either found floating (the best case scenario for the builder) or felled it took somewhere between three and six months to finish the Pelang (Nimmo 1990; Kurais, 1975). The prow of the vessel would be the portion of the tree that faced towards the roots, and the stern towards the treetops. Additionally, whichever side of the tree lay on the ground after being felled became the bottom of the boat so that workers could remove the top portion of the tree to make it lighter when it was dragged out of the forest (Kurais 1975)

(Kurais 1975; figure 17)

The model clearly shows the boxlike shape of the pelang’s central portion with the sides of the boat and the bottom meeting at sharp edges. These edges, or chines, made the boat slightly slower to travel through the water, but made it easier to drag the vessel onto the beach
(Doran, 1972: 157; Spoehr 1971). It also shows how the 2 bamboo tariks (outriggers) were attached to the canoe via sa-ams—the curving pieces of wood that support the outriggers and run perpendicularly through the canoe (Kurais 1975). The model is true here, showing how plant material was used to tie different elements of the vessel together.

Where the model and the vessel differ is the number and fastening of the planks above the dugout portion of the canoe. This part of the vessel, known as the “freeboard,” traditionally had four to five additional planks added on each side (Nimmo 1990, 71). These planks were attached via plant material, which was threaded through holes in the stacked planks. Only in Indonesian vessels were the freeboards attached via treenails, or dowels (Doran 1972, 61). In this model only one plank is added as the freeboard and it is attached via nails. The attached plank however does show the Pelangs traditional “ukil” bow carvings and color paint (Kurais 1975).

Thus save the freeboard size and attachment, as well as the mis-rigging of this model (see post 1), the model is very accurate. Unfortunately, the missing freeboard cannot shed any light on how stable and seaworthy the vessel was in the wide open ocean. In general however it’s believed that despite the additional freeboard the vessel was not particularly good in the open
ocean due to its somewhat smaller size and the water that would splash into the canoe (Doran, 1972; Nimmo 1990). What we do know from the model is that the oarlocks I noted in my first blog post are actually designed to carry the sail (including mast and booms) of the pelang. This allowed the vessel to be easily stored on land (and again with the flat bottom for beaching) as well as allowing an easy method for de-rigging the sail and associated parts when the vessel was out on the water fishing.

References


_______, 1981, Wangka – Austronesian Canoe Origins, College Station, Texas.

Kurais, Muhammad II, 1975, Boat Building of the Sama, Mindanao Journal 1, 4, 67-125.
